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Abstract—Classic event matching techniques in large-scale
Content-based Publish/Subscribe Systems mostly rely on pred-
icate indexing or tree-based mechanisms for fast subscription
evaluation. In the context of visual analytics, such techniques are
limited in supporting subscriptions requiring expensive filtering
operators over unstructured event types (i.e. images and videos).
In this work, user subscriptions over visual content are answered
as conjunctions of commutative Boolean filters where each filter
is associated with a single high-level semantic concept that
may be shared across multiple subscriptions. The shared-filter
ordering problem has been previously studied in centralized data
stream management systems; prior works propose approximation
algorithms that achieve near-optimal cost reductions in the
evaluation of overlapping queries. However, in a distributed
publish/subscribe setting, even an optimal ordering of filter
evaluations at brokers with high workloads can create bottlenecks
and waste downstream resources. We present a distributed greedy
algorithm that leverages existing routing methodologies to order
and distribute the execution of filters across brokers on various
dissemination paths. Experiments with several pub/sub work-
loads show 50% to 70% decrease in event latencies and noticeable
improvements in resource utilization across the overlay.

Index Terms—Publish/subscribe, Expensive Filters, Shared-
filter Ordering, Overlay Networks, Greedy Algorithm

I. INTRODUCTION

Publish/Subscribe systems have been widely adopted as a
loosely coupled communication paradigm for building large-
scale distributed systems. Many real-world applications lever-
age the selective dissemination capabilities of the paradigm
to exchange millions of events between geographically scat-
tered entities. For instance, Spotify is a peer-assisted music
streaming service that uses a pub/sub engine [1] for deliv-
ering hundreds of millions of user generated events every
day. PubNub [2] is a proprietary network that implements
a pub/sub interface to power real-time global-scale commu-
nication across many applications such as secure chat and
consumer delivery tracking. Common to these applications
is the need for an asynchronous and decoupled exchange of
scalar events comprising textual and numerical values.

While large-scale pub/sub systems accommodate for the
different filtering requirements of the above applications, they
currently lack support for unstructured data types such as
images and videos. Real-time multimedia applications such
as traffic management, online retail, and online-gaming can
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benefit from the fine-grained filtering and dissemination ca-
pabilities of pub/sub systems. Nonetheless, achieving high
degrees of expressiveness while maintaining the scalability of
conventional distributed pub/sub systems is a challenging task
especially when input events are unlabelled raw images. As
an example, a subscriber interested in getting notified when
a photograph of a sunny day on the beach gets published
can issue a subscription to a pub/sub interface specifying the
semantic concepts that the photo should satisfy (e.g. beach,
sand, sunny). State-of-the-art methods in computer vision
rely on learning representations using deep neural networks
(DNNs) due to their high accuracy in tasks ranging from
image classification to object detection. Unfortunately, it is
generally acknowledged that for real-time applications with
high data rates, applying DNNs is prohibitively expensive
requiring extensive resources [3].

In large-scale video databases, recent works proposed pre-
ceding costly DNNs by specialized visual filters to speed
up query processing [3], [4]. We observe that by embed-
ding such filters into pub/sub broker overlays, we can offer
support for visual content as native events. However, in a
geographically distributed setting with a growing number of
filters and subscribers, optimizing the matching process by
exploiting the ordering of filter executions becomes crucial.
Furthermore, subscriptions can be distributed over brokers in
different locations where a routing solution would be in place
to facilitate their propagation towards publisher-end brokers.
Matching visual events at a single broker, even with an optimal
filter ordering, can lead to centralizing the matching process,
creating bottlenecks, and wasting downstream resources.

The overall contributions of this paper are:

¢ An approach to adaptively order and distribute expensive
filters in distributed publish/subscribe systems by deter-
mining which filter(s) to execute at each broker without
requiring global system knowledge.

« Extensive experiments using varying workloads in terms
of the numbers of subscriptions and required filters, filter
popularity distributions, and overlay topologies.

The rest of the paper is organized as follows: We discuss
related works in section II, in section III we provide back-
ground on the shared-filter ordering problem. In section IV



we describe our publication routing graph and the adaptive
filtering algorithm in detail. The experimental evaluation is
provided in section V. Finally, we conclude in section VI.

II. RELATED WORK

1) Filtering mechanisms in pub/sub: Earlier works repre-
sent events as attribute-value pairs where subscriptions com-
prise conjunctions of predicates over individual attributes.
SIENA [5] constructs the routing table as a dictionary data
structure that maintains the different Boolean predicates in-
dexed based on the specific properties of constraint operators
(i.e. = <, >, etc.). Fabret et al. [6] cluster subscriptions
based on their size and common equality predicates among
other properties and perform event matching by leveraging
an efficient data structure comprising a set of indexes, a
predicate bit vector, and a vector of references to subscription
cluster lists. Other approaches [7], [8] organize predicates in
tree structures where events traverse down the tree following
matching predicates towards the leaves representing different
subscriptions. Since the evaluation of individual predicates is
of negligible cost in the systems discussed above, approaches
aim at optimizing the overall subscription evaluation efficiency
as opposed to determining an optimal ordering of predicates
evaluations. Determining a near-optimal filter execution order
is crucial to our problem due to high filter execution costs.

2) Expensive processing in pub/sub: There have been a
few works in the literature that proposed various forms of
expensive processing in pub/sub overlays. In [9] they proposed
an adaptive model for supporting distributed aggregations of
events represented as attribute-value pairs with the goal of
minimizing the communication overhead. While in [10] they
addressed customized content dissemination by embedding
expensive transformation operators where clients specify the
format in which they wish the data to be delivered. However,
their optimizations focus on properties that are intrinsic to
event aggregation or transformation.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. Shared-filter Ordering Problem

The shared filter ordering problem consists of a set of
queries (), and a set of commutative Boolean filters F'. Each
query is represented as a conjunction of filters where the
evaluation of each filter on an event results in a Boolean
outcome of either true or false. A min-cost adaptive execution
plan would result in executing a subset of all filters to
determine queries that are satisfied by an event. Munagala et
al. [11] identified three important factors that decide the utility
of executing individual filters.

o Cost: ¢; denotes the time cost required by a filter f; to
process an event e. Intuitively, less costly filters should
be evaluated earlier.

« Selectivity: s; denotes the probability that an event e will
satisfy filter f; resulting in a frue outcome. Executing
filters with low selectivity earlier would result in higher
data reduction.
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Fig. 1: Shared-filter Optimization

o Popularity: p; denotes the participation of a filter f; in
the registered subscriptions. It's intuitive that filters with
high popularity should be executed earlier.

Munagala et al. [11] observed that an adaptive strategy can
be conveniently represented as a decision tree (Fig. 1a) starting
with an initial filter that can have two children for a true and
false outcome. They propose a greedy heuristic that decides the
two possible children based on a metric that combines the three
factors ¢;, s;, and p;. Suppose filter f; occurs in p; queries,
then with probability 1 — s;, f; resolves p; queries. Hence,
they define pRank of f; as the ratio of ¢; to p;(1 —s;), where
they pick the filter with the minimum pRank and recursively
construct the decision tree. However, the heuristic disregards
the probability s; that filter f; results in a true outcome and
its impact on the current queries. The edge-coverage based
algorithm presented by Liu et al. [12] overcome this limitation
due to their bipartite graph representation (i.e. Residual Graph)
of the query-filter mapping (Fig. 1b and 1c). An edge between
two nodes in the graph means that the filter f; is part of
the conjunction of filters required by the query. If a filter
evaluation outcome comes out as true, only the outgoing edges
denoted A; are covered (Fig. 1b). Otherwise, as shown in the
Fig. lc, f1 has yielded a false outcome which covers all its
outgoing edges and eliminates all associated subscriptions and
by that also covering their outgoing edges denoted Ay.
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UP(f;) stands for the Unit Price of filter f;. The filter with
lower unit price will be assigned higher evaluation priority,

which reflects a low cost in addition to higher expected edge
cover.

UP(fi) = (1)

B. Problem Definition

Existing approaches to filter ordering assume a single
processing engine that connects all the data producers and
consumers and resolves all queries registered in the system. On
the contrary, in a distributed pub/sub scenario, the system com-
prises a federated overlay of brokers that communicate through
a routing substrate (Fig. 2a). User subscriptions are routed
to brokers that connect incoming event streams from various
publishers, and notifications are routed through the overlay to
interested subscribers. The objective of filter placement and
ordering is to minimize the Processing Delay Cost which may
be defined as the time required by filters executed along a
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Fig. 2: (a) Federated broker overlay, (b) Message propagation schema based on the Publication Routing Graph (PRG)

path towards a subscriber to process an event. Let B(s) be
the set of n brokers comprising the path between a subscriber
s and the corresponding publisher of interest rooted at a broker
Bj € B(s). Each broker B; € B(s) executes a subset of all
required filters according to the employed execution plan. Let
cp, be the cost (i.e delay) at broker B;, then the cost of an
execution plan P as perceived by s is given by:

cost(s, P) = Z cB, )

Now, we can formally define the shared-filter ordering
problem in distributed publish/subscribe systems:

Definition 1: Given a set of subscriptions S, a set of filters
F, and a set of brokers B. Find a shared execution plan P
that minimizes cost(S, P).

IV. SoLUTION COMPONENTS
A. Distributed shared-filter ordering

Selective event routing in content-based pub/sub overlays
reduces message overhead through a deterministic reverse path
propagation of subscriptions based on advertisement flooding.
As publishers join, they issue advertisement messages that de-
scribe the type of content they intend to publish. On reception
of an advertisement, a broker stores it along with the link
it came from in its local Subscription Routing Table (SRT).
Subscribers interested in receiving published events send their
subscriptions to their connecting broker. Subscriptions are then
routed along the reverse paths towards publisher-end brokers
based on the SRT of each broker and are then registered in
Publication Routing Tables (PRTs). Conventionally, publica-
tion matching is carried out in each broker by comparing
subscription predicates against numerical or textual event
attributes; on identification of a match, the notification is for-
warded to the neighbouring broker where the matching process
is repeated until the event reaches all interested subscribers.
To this end, the introduction of visual filters departs from this
match-and-forward model. More precisely, executing a portion
of the required filters at a broker would enrich an image by
uncovering some of the semantic concepts that it represents.
Consequently, downstream brokers receiving the image need
to be aware of the concepts previously identified and filters

executed in order to avoid redundant processing. Our solution
can be decomposed into three main components as follows.

1) Publication Routing Graph: To maintain the loosely-
coupled nature of interaction in pub/sub, the ordering algo-
rithm should only consider the local information available
at each broker. Consequently, based on each broker’s PRT
we construct a Publication Routing Graph (PRG) as two
connected bipartite graphs. Figure 2b shows the PRGs of
brokers By and Bjs. The left-hand side of the graph represents
the residual graph discussed in section III-A. The right-hand
side represents a mapping between subscriptions and the links
they were received through.

2) Match-and-forward Edge-Coverage-based algorithm
(MEC): The MEC algorithm starts with an initial PRG at
the publisher-end broker and evaluates filters one-by-one in
a sequential order then terminates when all links have been
resolved. At each step the decision to execute a filter is based
on its unit price UP(f;) as in equation (1). The filter with
the least unit price is evaluated and then removed from the
graph. Based on its outcome, all satisfied subscriptions are
removed as well as their outgoing edges. The unit prices of
all impacted filters are then updated to select the next filter
in the adaptive ordering.

Graph Short-cutting: The algorithm shortcuts the eval-
uation of filters based on a subscription-link mapping that
helps extend the edge coverage of filters. If a link is satisfied
by a matching subscription, it is removed with its associated
subscriptions and their edges. Since any additional executions
of filters required by subscriptions received through the same
link would not provide additional information in terms of event
forwarding. Consider the example in figure 2b, B; is aware of
subscriptions s1, So, and s3 through link /; and s4 through [5.
The outcome of the first filter (f7) is true, hence subscription
s1 and link [; are satisfied. This yields the removal of sq
and ss, in addition to filter fo and by this short-cutting the
execution of filters by deferring f5 to Bs.

Extended Edge-Cover (EMEC): Prior to executing a filter
fi having probability s; of resolving a subscription, we in-
corporate the possible edges that can also be covered by link
elimination into Ap(f;) which results in more edge coverage
and decreases its unit price U P(f;). This ultimately impacts
the decision of the next filter to execute leading to faster
evaluation.



3) Message Propagation Schema: When the local PRG is
empty, the algorithm proceeds to attach the results to the event
and forwards it through matched links. When an internal bro-
ker receives an event, it first fetches the results of prior filters,
updates its local PRG, and proceeds to process the event using
the resulting graph. By eliminating all subscriptions received
through a link as soon as a subscription that came through
the same link is satisfied, we end up with two important
advantages: (1) The updated PRG at the current broker is
tailored towards choosing the next best filter for satisfying
the remaining links without considering subscriptions that can
be answered by downstream brokers. And (2) the distribution
of subscriptions across brokers gets sparser as we go further
down the tree, and by deferring computations downstream, the
popularity distributions from the point of view of each broker
will change and by that the decision will be more fitting for
the subset of subscribers in each brokers local PRT.

V. EVALUATION

In this section we empirically evaluate our algorithms via
simulation. We implement two extreme baselines that resemble
the upper and lower bounds for the shared filter ordering
problem in publish/subscribe overlays. The two baselines
are based on Residual Graph [12]; we implement the edge-
coverage based algorithm to be executed in publisher-end
brokers and subscriber-end brokers respectively. In the first
case, referred to as All In Root (AIR), publisher-end brokers
carry out the adaptive ordering until all subscriptions are
resolved before disseminating matched events. Whereas for
the second baseline, namely All In Leaves (AIL), all events
are flooded towards subscriber-end brokers where the adaptive
filter ordering is carried out based on local residual graphs that
only consider directly connected subscribers.

A. Experimental Setup

1) Overlay construction: Our overlay network implemen-
tation is based on a distributed pub/sub system simulation
written in Java. We construct tree topologies based on real-
world traces that provide network latencies across servers in
the PlanetLab public research network. The dataset collected
by Zhu et al. [13] comprises several 490 x 490 matrices
measured over multiple time slices, where the (4, j)-th entry of
a matrix m; indicates the measured Round Trip Time (RTT)
from node ¢ to node j at time ¢t. We select 100 nodes at random
to host the brokers and compute the Minimum-Spanning-Tree
(MST) that connects them. We follow this process to create
five different pub/sub overlay topologies.

2) Instance generation: Based on the work by Mungala et
al. [11], the filters are generated by specifying their cost and
selectivity values based on a random distribution from the pre-
set value ranges. We specify the costs of individual filters out
of the range [12, 16] that was decided via extensive prototyping
using MobileNets [14]. An efficient CNN architecture that
achieves comparable accuracy to deep models while surfacing
two hyper-parameters that can be tuned to build very small,
low latency models. The selectivity range was set to [0, 0.25]

because the matching ratio of subscriptions is known to be
low [9] in pub/sub literature. We then generate subscriptions
comprising combinations of filters selected following a Zipf
Distribution due the close resemblance between image filtering
based on object category occurrences and text search engines
and the inverse relationship between the frequency of word
occurrence and its rank. Finally, we generate an event stream
of consecutive event items that are simulated by deciding for
each event whether each filter f; has a true or false outcome
based on its selectivity s;. Subscriptions are distributed across
brokers based on a load-value 8 € [0, 1] chosen randomly for
each broker. For each run, the publisher issues 1000 events;
each experiment instance is repeated 5 times using 5 different
typology structures resulting in a total of 25 runs for each
configuration.

B. Experiments

1) Impact of subscriptions: In the first experiment we
vary the number of subscriptions while fixing the number
of filters to 100. We measure the average processing delay
cost along every path towards subscribers which accounts for
the impact of the processing cost at each broker (i.e. filter
executions) on the average perceived latency by subscribers
while excluding communication costs. As shown in Figure
3a, the MEC and EMEC algorithms perform 50 — 70% better
than the AIR baseline when filter popularities follow a Zipfian
distribution. The sharing degree in this experiment is highly
skewed, which makes a few filters very popular and leads to
resolving many subscriptions at an early stage by adaptively
prioritizing filters with high edge-coverage. Figure 3b shows
the same experiment under a uniform distribution where we
eliminate skew by randomly assigning every filter a weight
between [0,1] and assigning filters to subscriptions based on
a weighted probability. Results show a noticeable increase
in the processing delay cost of all approaches because the
adaptive ordering of filters requires more filter executions
to resolve all subscriptions when the popularity of filters is
less skewed. Furthermore, EMEC consistently outperforms all
other approaches due to short-cutting the residual graph earlier
by incorporating the extended edge cover into the calculation
of a filter’s unit price.

2) Redundancy overhead: In the third experiment, we mea-
sure the redundancy overhead of all approaches as the total
cost of filter executions across all broker in the overlay. Results
in Figure 3c show how AIL leads to a linearly increasing
total cost as the number of subscriptions increases. This is
because sharing across subscriptions is only leveraged locally
at each subscriber-edge broker as opposed to sharing filters
early on in the overlay. We can also see how AIR introduces
the least overhead due to executing each filter only once at the
publisher-end broker. Even though our algorithms can lead to
some redundancy by executing the same filters at different
paths due to offloading, this is balanced by decreasing the
number of filters executed on each path, which explains the
slight increase in processing cost as shown in Fig. 3c. We
also highlight how EMEC consistently leads to slightly more
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Fig. 3: Experimental Results

total cost than MEC because of offloading more filters to be
executed downstream by eliminating more subscriptions ear-
lier with the extended edge cover resulting in more redundant
processing on separate paths.

3) Impact of filters: In this experiment we fix the number
of subscriptions to 3000 and vary the number of filters. We
observe that the performance of AIR is more sensitive to
the increase in the number of filters as compared to that of
subscriptions. This is because in the latter, all algorithms use
the same set of filters in the evaluation process. As the number
of subscriptions increases, each filter will have a larger chance
of being evaluated but the overall cost is bounded by the total
cost of all filters available in the system. Figure 3d shows
how the processing delay cost when applying MEC or EMEC
degrades slower due to distributing the execution of filters.

VI. CONCLUSION

In this work, we tackle the problem of supporting visual
content filtering in distributed publish/subscribe systems. We
propose the use of pub/sub as a medium for an asynchronous
and decoupled interaction between multimedia producers and
consumers. More precisely, we introduce fast binary filters
into a pub/sub overlay of dedicated brokers, we propose a
distributed and adaptive greedy algorithm to order and dis-
tribute the execution of filters across paths towards subscribers.
Our experiments with varying pub/sub workloads show clear
improvements in the average processing delay cost perceived
by individual subscribers while keeping message overhead to
a minimum. An interesting avenue for future work would be
to look at filters that are trained to detect multiple concepts
instead of binary filters. This increases the complexity of
the ordering problem where each individual filter can hold
the impact of different concepts on the current registered
subscriptions.
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